Modulus fault attacks

Experiments and refinements

Conclusion

Modulus Fault Attacks Against RSA–CRT Signatures

Éric Brier¹ David Naccache² Phong Q. Nguyen^{2,3} Mehdi Tibouchi²

 1 Ingenico

²École normale supérieure

³INRIA

CHES 2011, Nara, 2011-09-30

Modulus fault attacks 0000 0000 Experiments and refinements

Conclusion

Introduction

Modulus fault attacks

Basic idea Using orthogonal lattices

Experiments and refinements

Simulation and experiments Solving the N' problem

Modulus fault attacks 0000 0000 Experiments and refinements

Conclusion

Signing with RSA-CRT

RSA signatures:

 $\sigma = \mu(m)^d \bmod N$

For suitable padding functions μ (e.g. FDH, PSS...) this is a provably secure signature scheme.

- Remains the most widely used signature scheme today. Implemented in many embedded applications (esp. smart cards).
- However, modular exponentiation is rather slow.
- Very commonly used improvement: using the Chinese Remainder Theorem.

1.
$$\sigma_p = \mu(m)^{d \mod p-1} \mod p$$

2.
$$\sigma_q = \mu(m)^{d \mod q-1} \mod q$$

3.
$$\sigma = CRT(\sigma_p, \sigma_q) \mod N$$

Modulus fault attacks 0000 0000 Experiments and refinements

Signing with RSA-CRT

RSA signatures:

$$\sigma = \mu(m)^d \bmod N$$

For suitable padding functions μ (e.g. FDH, PSS...) this is a provably secure signature scheme.

- Remains the most widely used signature scheme today. Implemented in many embedded applications (esp. smart cards).
- However, modular exponentiation is rather slow.
- Very commonly used improvement: using the Chinese Remainder Theorem.

1.
$$\sigma_p = \mu(m)^{d \mod p-1} \mod p$$

2.
$$\sigma_q = \mu(m)^{d \mod q-1} \mod q$$

3.
$$\sigma = CRT(\sigma_p, \sigma_q) \mod N$$

Modulus fault attacks 0000 0000 Experiments and refinements

Signing with RSA-CRT

RSA signatures:

$$\sigma = \mu(m)^d \bmod N$$

For suitable padding functions μ (e.g. FDH, PSS...) this is a provably secure signature scheme.

- Remains the most widely used signature scheme today. Implemented in many embedded applications (esp. smart cards).
- However, modular exponentiation is rather slow.
- Very commonly used improvement: using the Chinese Remainder Theorem.

1.
$$\sigma_p = \mu(m)^{d \mod p-1} \mod p$$

2.
$$\sigma_q = \mu(m)^{d \mod q-1} \mod q$$

3.
$$\sigma = CRT(\sigma_p, \sigma_q) \mod N$$

Modulus fault attacks 0000 0000 Experiments and refinements

Signing with RSA-CRT

RSA signatures:

$$\sigma = \mu(m)^d \bmod N$$

For suitable padding functions μ (e.g. FDH, PSS...) this is a provably secure signature scheme.

- Remains the most widely used signature scheme today. Implemented in many embedded applications (esp. smart cards).
- However, modular exponentiation is rather slow.
- Very commonly used improvement: using the Chinese Remainder Theorem.

1.
$$\sigma_p = \mu(m)^{d \mod p-1} \mod p$$

2.
$$\sigma_q = \mu(m)^{d \mod q-1} \mod q$$

3.
$$\sigma = CRT(\sigma_p, \sigma_q) \mod N$$

Modulus fault attacks 0000 0000 Experiments and refinements

Signing with RSA-CRT

RSA signatures:

$$\sigma = \mu(m)^d \bmod N$$

For suitable padding functions μ (e.g. FDH, PSS...) this is a provably secure signature scheme.

- Remains the most widely used signature scheme today. Implemented in many embedded applications (esp. smart cards).
- However, modular exponentiation is rather slow.
- Very commonly used improvement: using the Chinese Remainder Theorem.

1.
$$\sigma_p = \mu(m)^{d \mod p-1} \mod p$$

2. $\sigma_q = \mu(m)^{d \mod q-1} \mod q$
3. $\sigma = CRT(\sigma_p, \sigma_q) \mod N$

Experiments and refinements

The Boneh-DeMillo-Lipton fault attack (1997)

- The problem with CRT: fault attacks.
- A fault in signature generation makes it possible to recover the secret key!
 - 1. $\sigma_{\rho} = \mu(m)^{d \mod \rho 1} \mod \rho$
 - $\mu = (m)^{d \mod p} + \mu(m)^{d \mod p}$
 - $\sigma' = \mathsf{CRT}(\sigma_{p}, \sigma'_{q}) \mod N = \leftarrow faulty signature$
- Then σ^{re} is μ(m) mod p but not mod q, so the attacker can then factor N:

$$p = \gcd(\sigma'^e - \mu(m), N)$$

- The problem with CRT: fault attacks.
- A fault in signature generation makes it possible to recover the secret key!
 - 1. $\sigma_p = \mu(m)^{d \mod p-1} \mod p$ 2. $\sigma'_q \neq \mu(m)^{d \mod q-1} \mod q \quad \leftarrow \text{ fault}$ 3. $\sigma' = \operatorname{CRT}(\sigma_p, \sigma'_q) \mod N \quad \leftarrow \text{ faulty sign}$
- Then σ^{'e} is μ(m) mod p but not mod q, so the attacker can then factor N:

$$p = \gcd(\sigma'^e - \mu(m), N)$$

- The problem with CRT: fault attacks.
- A fault in signature generation makes it possible to recover the secret key!

1.
$$\sigma_p = \mu(m)^{d \mod p-1} \mod p$$

 $\sigma'_q \neq \mu(m)^{a \mod q-1} \mod q \quad \leftarrow \text{fault}$

3. $\sigma' = CRT(\sigma_p, \sigma'_q) \mod N \leftarrow faulty signature$

 Then σ^{'e} is μ(m) mod p but not mod q, so the attacker can then factor N:

$$p = \gcd(\sigma'^e - \mu(m), N)$$

- The problem with CRT: fault attacks.
- A fault in signature generation makes it possible to recover the secret key!

1.
$$\sigma_p = \mu(m)^{d \mod p-1} \mod p$$

2. $\sigma'_q \neq \mu(m)^{d \mod q-1} \mod q \quad \leftarrow \text{ fault}$ 3. $\sigma' = \operatorname{CRT}(\sigma_p, \sigma'_a) \mod N \quad \leftarrow \text{ faulty signature}$

$$p = \gcd(\sigma'^e - \mu(m), N)$$

- The problem with CRT: fault attacks.
- A fault in signature generation makes it possible to recover the secret key!

1.
$$\sigma_p = \mu(m)^{d \mod p-1} \mod p$$

2. $\sigma'_q \neq \mu(m)^{d \mod q-1} \mod q \quad \leftarrow \text{fault}$
3. $\sigma' = \operatorname{CRT}(\sigma_p, \sigma'_q) \mod N \quad \leftarrow \text{faulty signature}$

 Then σ^{*i*e} is μ(m) mod p but not mod q, so the attacker can then factor N:

$$p = \gcd(\sigma'^e - \mu(m), N)$$

- The problem with CRT: fault attacks.
- A fault in signature generation makes it possible to recover the secret key!

1.
$$\sigma_p = \mu(m)^{d \mod p-1} \mod p$$

2. $\sigma'_q \neq \mu(m)^{d \mod q-1} \mod q \quad \leftarrow \text{ fault}$
3. $\sigma' = \operatorname{CRT}(\sigma_p, \sigma'_q) \mod N \quad \leftarrow \text{ faulty signature}$

• Then σ'^e is $\mu(m) \mod p$ but not mod q, so the attacker can then factor N:

$$p = \gcd(\sigma'^e - \mu(m), N)$$

- The problem with CRT: fault attacks.
- A fault in signature generation makes it possible to recover the secret key!

1.
$$\sigma_p = \mu(m)^{d \mod p-1} \mod p$$

2. $\sigma'_q \neq \mu(m)^{d \mod q-1} \mod q \quad \leftarrow \text{ fault}$
3. $\sigma' = \operatorname{CRT}(\sigma_p, \sigma'_q) \mod N \quad \leftarrow \text{ faulty signature}$

 Then σ'^e is μ(m) mod p but not mod q, so the attacker can then factor N:

$$p = \gcd(\sigma'^e - \mu(m), N)$$

Modulus fault attacks 0000 0000 Experiments and refinements

Shamir's trick

- Faults against RSA-CRT signatures have been an active research subject since then. Many variants and countermeasures have been proposed.
- One simple countermeasure due to Shamir is to compute the signature as follows (r is a small fixed integer like 2³¹ – 1):

1.
$$\sigma_p^+ = \mu(m)^d \mod r \cdot p$$

2.
$$\sigma_q^+ = \mu(m)^{\alpha} \mod r \cdot q$$

3. if $\sigma_p^+ \not\equiv \sigma_q^+ \pmod{r}$, abort

4.
$$\sigma = CRT(\sigma_p^+, \sigma_q^+) \mod N$$

• If one of the half-exponentiations is perturbed, signature generation is very likely to abort, and hence the fault attacker cannot factor anymore!

Modulus fault attacks 0000 0000 Experiments and refinements

Shamir's trick

- Faults against RSA-CRT signatures have been an active research subject since then. Many variants and countermeasures have been proposed.
- One simple countermeasure due to Shamir is to compute the signature as follows (r is a small fixed integer like 2³¹ – 1):

1.
$$\sigma_p^+ = \mu(m)^d \mod r \cdot p$$

2. $\sigma_q^+ = \mu(m)^d \mod r \cdot q$
3. if $\sigma_p^+ \notin \sigma_q^+ \pmod{r}$, abort
4. $\sigma = \operatorname{CRT}(\sigma_p^+, \sigma_q^+) \mod N$

• If one of the half-exponentiations is perturbed, signature generation is very likely to abort, and hence the fault attacker cannot factor anymore!

Modulus fault attacks 0000 0000 Experiments and refinements

Shamir's trick

- Faults against RSA-CRT signatures have been an active research subject since then. Many variants and countermeasures have been proposed.
- One simple countermeasure due to Shamir is to compute the signature as follows (r is a small fixed integer like 2³¹ – 1):

1.
$$\sigma_p^+ = \mu(m)^d \mod r \cdot p$$

2. $\sigma_q^+ = \mu(m)^d \mod r \cdot q$
3. if $\sigma_p^+ \notin \sigma_q^+ \pmod{r}$, abort
4. $\sigma = \operatorname{CRT}(\sigma_p^+, \sigma_q^+) \mod N$

• If one of the half-exponentiations is perturbed, signature generation is very likely to abort, and hence the fault attacker cannot factor anymore!

Modulus fault attacks

Experiments and refinements

Conclusion

Introduction

Modulus fault attacks Basic idea Using orthogonal lattices

Experiments and refinements

Simulation and experiments Solving the N' problem

Modulus fault attacks 0000 0000 Experiments and refinements 0000 0000

- A lot of work has been invested into protecting the exponentiations in RSA-CRT signature generation.
- So what about attacking another part of the algorithm?
- Idea: attack the modular reduction instead!
 - $1 \cup \sigma_p = \mu(m)^n \mod p \cup \leftarrow ext{correct}$
 - 2. $\sigma_q = \mu(m)^q \mod q = \leftarrow \text{correct}$
 - $(2, \alpha' \in \operatorname{GRT}(a_p, a_p)$ and $h' = --i_{pully}$ signatures errors
- This new, strange type of faults can also be used to factor N.

Modulus fault attacks 0000 0000 Experiments and refinements 0000 0000

- A lot of work has been invested into protecting the exponentiations in RSA-CRT signature generation.
- So what about attacking another part of the algorithm?
- Idea: attack the modular reduction instead!
 - 1. $\sigma_{\rho} = \mu(m)^{\sigma} \mod \rho \quad \leftarrow \text{ correct}$ 2. $\sigma_{q} = \mu(m)^{\sigma} \mod q \quad \leftarrow \text{ correct}$ 3. $\sigma' \in \operatorname{CRT}(\sigma_{\rho}, \sigma_{q}) \mod N' = + \text{ faulty signatures wrong modular reduction}$
- This new, strange type of faults can also be used to factor N.

Modulus fault attacks 0000 0000 Experiments and refinements

Conclusion

- A lot of work has been invested into protecting the exponentiations in RSA-CRT signature generation.
- So what about attacking another part of the algorithm?
- Idea: attack the modular reduction instead!
 - σ_p = μ(m)^d mod p ← correct
 σ_q = μ(m)^d mod q ← correct
 σ' = CRT(σ_p, σ_q) mod N' ← faulty signature: wrong modular reduction!
- This new, strange type of faults can also be used to factor N.

Modulus fault attacks 000 000 Experiments and refinements 0000 0000

- A lot of work has been invested into protecting the exponentiations in RSA-CRT signature generation.
- So what about attacking another part of the algorithm?
- Idea: attack the modular reduction instead!

1.
$$\sigma_p = \mu(m)^d \mod p \quad \leftarrow \text{ correct}$$

- 2. $\sigma_q = \mu(m)^d \mod q \quad \leftarrow \text{ correct}$
- 3. $\sigma' = CRT(\sigma_p, \sigma_q) \mod N' \leftarrow \text{faulty signature: wrong modular reduction!}$
- This new, strange type of faults can also be used to factor N.

Modulus fault attacks 000 000 Experiments and refinements 0000 0000

- A lot of work has been invested into protecting the exponentiations in RSA-CRT signature generation.
- So what about attacking another part of the algorithm?
- Idea: attack the modular reduction instead!

1.
$$\sigma_p = \mu(m)^d \mod p \quad \leftarrow \text{ correct}$$

- 2. $\sigma_q = \mu(m)^d \mod q \quad \leftarrow \text{ correct}$
- 3. $\sigma' = CRT(\sigma_p, \sigma_q) \mod N' \quad \leftarrow \text{ faulty signature: wrong modular reduction!}$
- This new, strange type of faults can also be used to factor N.

Modulus fault attacks 000 000 Experiments and refinements 0000 0000

Attacking the modulus

- A lot of work has been invested into protecting the exponentiations in RSA-CRT signature generation.
- So what about attacking another part of the algorithm?
- Idea: attack the modular reduction instead!

1.
$$\sigma_p = \mu(m)^d \mod p \quad \leftarrow \text{ correct}$$

2.
$$\sigma_q = \mu(m)^d \mod q \quad \leftarrow \text{ correct}$$

3. $\sigma' = CRT(\sigma_p, \sigma_q) \mod N' \leftarrow \text{faulty signature: wrong modular reduction!}$

• This new, strange type of faults can also be used to factor N.

Modulus fault attacks 000 000 Experiments and refinements

Attacking the modulus

- A lot of work has been invested into protecting the exponentiations in RSA-CRT signature generation.
- So what about attacking another part of the algorithm?
- Idea: attack the modular reduction instead!

1.
$$\sigma_p = \mu(m)^d \mod p \leftarrow \text{correct}$$

2. $\sigma_q = \mu(m)^d \mod q \leftarrow \text{correct}$
3. $\sigma' = \text{CRT}(\sigma_p, \sigma_q) \mod N' \leftarrow \text{faulty signature: wrong}$
modular reduction!

• This new, strange type of faults can also be used to factor N.

Modulus fault attacks

Experiments and refinements

Conclusion

Using the fault (I)

 More precisely, suppose we can obtain the same signature on a certain message twice, once correctly and once with a fault. Then we get:

$$\begin{cases} \sigma = \mathsf{CRT}(\sigma_p, \sigma_q) \mod N & \leftarrow \text{ correct} \\ \sigma' = \mathsf{CRT}(\sigma_p, \sigma_q) \mod N' & \leftarrow \text{ faulty} \end{cases}$$

- Applying the CRT to these two relations, we obtain the value $CRT(\sigma_p, \sigma_q) \mod NN'$.
- Now recall that:

$$CRT(\sigma_p, \sigma_q) = \alpha \cdot \sigma_p + \beta \cdot \sigma_q$$

where

$$\alpha = q \cdot (q^{-1} \mod p) \quad \beta = p \cdot (p^{-1} \mod q)$$

 In particular, CRT(σ_p, σ_q) is an integer of size ≈ N^{3/2}, so if we know it modulo NN' ≈ N², we actually know its value in Z.

Modulus fault attacks

Experiments and refinements

Conclusion

Using the fault (I)

 More precisely, suppose we can obtain the same signature on a certain message twice, once correctly and once with a fault. Then we get:

$$\begin{cases} \sigma = \mathsf{CRT}(\sigma_p, \sigma_q) \mod N & \leftarrow \text{ correct} \\ \sigma' = \mathsf{CRT}(\sigma_p, \sigma_q) \mod N' & \leftarrow \text{ faulty} \end{cases}$$

- Applying the CRT to these two relations, we obtain the value $CRT(\sigma_p, \sigma_q) \mod NN'$.
- Now recall that:

$$CRT(\sigma_p, \sigma_q) = \alpha \cdot \sigma_p + \beta \cdot \sigma_q$$

where

$$\alpha = q \cdot (q^{-1} \mod p) \quad \beta = p \cdot (p^{-1} \mod q)$$

 In particular, CRT(σ_p, σ_q) is an integer of size ≈ N^{3/2}, so if we know it modulo NN' ≈ N², we actually know its value in Z.

Modulus fault attacks

Experiments and refinements

Conclusion

Using the fault (I)

 More precisely, suppose we can obtain the same signature on a certain message twice, once correctly and once with a fault. Then we get:

$$\begin{cases} \sigma = \mathsf{CRT}(\sigma_p, \sigma_q) \mod N & \leftarrow \text{ correct} \\ \sigma' = \mathsf{CRT}(\sigma_p, \sigma_q) \mod N' & \leftarrow \text{ faulty} \end{cases}$$

- Applying the CRT to these two relations, we obtain the value $CRT(\sigma_p, \sigma_q) \mod NN'$.
- Now recall that:

$$\mathsf{CRT}(\sigma_p, \sigma_q) = \alpha \cdot \sigma_p + \beta \cdot \sigma_q$$

where

$$\alpha = q \cdot (q^{-1} \mod p) \quad \beta = p \cdot (p^{-1} \mod q)$$

 In particular, CRT(σ_p, σ_q) is an integer of size ≈ N^{3/2}, so if we know it modulo NN' ≈ N², we actually know its value in Z.

Modulus fault attacks

Experiments and refinements

Conclusion

Using the fault (I)

 More precisely, suppose we can obtain the same signature on a certain message twice, once correctly and once with a fault. Then we get:

$$\begin{cases} \sigma = \mathsf{CRT}(\sigma_p, \sigma_q) \mod N & \leftarrow \text{ correct} \\ \sigma' = \mathsf{CRT}(\sigma_p, \sigma_q) \mod N' & \leftarrow \text{ faulty} \end{cases}$$

- Applying the CRT to these two relations, we obtain the value $CRT(\sigma_p, \sigma_q) \mod NN'$.
- Now recall that:

$$\mathsf{CRT}(\sigma_p, \sigma_q) = \alpha \cdot \sigma_p + \beta \cdot \sigma_q$$

where

$$\alpha = q \cdot (q^{-1} \mod p) \quad \beta = p \cdot (p^{-1} \mod q)$$

• In particular, $CRT(\sigma_p, \sigma_q)$ is an integer of size $\approx N^{3/2}$, so if we know it modulo $NN' \approx N^2$, we actually know its value in \mathbb{Z} .

Modulus fault attacks

Experiments and refinements

Conclusion

Using the fault (II)

Each pair formed of a correct and of a faulty signature gives us an equation of the form:

 $\boldsymbol{v} = \boldsymbol{\alpha} \cdot \boldsymbol{x} + \boldsymbol{\beta} \cdot \boldsymbol{y}$

where v is known, α, β are unknown, fixed and of size N, and x, y are unknown, of size $N^{1/2}$, and depend on the signature.

One such relation doesn't get us far, but since (x, y) is small compared to (α, β) , we expect multiple relations of this form to allow us to recover the x's and y's, and hence factor N.

So suppose we can obtain a vector **v** of ℓ CRT values, so that we have an equation:

 $\mathbf{v} = \alpha \mathbf{x} + \beta \mathbf{y}$

The goal is to recover \mathbf{x} and \mathbf{y} from \mathbf{v} . To do so, we can used a cryptanlytic technique introduced by Nguyen and Stern in the 1990s: orthogonal lattices.

Modulus fault attacks

Experiments and refinements

Conclusion

Using the fault (II)

Each pair formed of a correct and of a faulty signature gives us an equation of the form:

 $v = \alpha \cdot x + \beta \cdot y$

where v is known, α, β are unknown, fixed and of size N, and x, y are unknown, of size $N^{1/2}$, and depend on the signature.

One such relation doesn't get us far, but since (x, y) is small compared to (α, β) , we expect multiple relations of this form to allow us to recover the x's and y's, and hence factor N.

So suppose we can obtain a vector **v** of ℓ CRT values, so that we have an equation:

 $\mathbf{v} = \alpha \mathbf{x} + \beta \mathbf{y}$

The goal is to recover \mathbf{x} and \mathbf{y} from \mathbf{v} . To do so, we can used a cryptanlytic technique introduced by Nguyen and Stern in the 1990s: orthogonal lattices.

Modulus fault attacks

Experiments and refinements

Conclusion

Using the fault (II)

Each pair formed of a correct and of a faulty signature gives us an equation of the form:

 $v = \alpha \cdot x + \beta \cdot y$

where v is known, α, β are unknown, fixed and of size N, and x, y are unknown, of size $N^{1/2}$, and depend on the signature.

One such relation doesn't get us far, but since (x, y) is small compared to (α, β) , we expect multiple relations of this form to allow us to recover the x's and y's, and hence factor N.

So suppose we can obtain a vector \mathbf{v} of ℓ CRT values, so that we have an equation:

$$\mathbf{v} = \alpha \mathbf{x} + \beta \mathbf{y}$$

The goal is to recover \mathbf{x} and \mathbf{y} from \mathbf{v} . To do so, we can used a cryptanlytic technique introduced by Nguyen and Stern in the 1990s: orthogonal lattices.

Modulus fault attacks •••••

Experiments and refinements

Conclusion

Introduction

Modulus fault attacks Basic idea Using orthogonal lattices

Experiments and refinements

Simulation and experiments Solving the N' problem

Modulus fault attacks

Experiments and refinements

Conclusion

A primer on lattices

Modulus fault attacks

Experiments and refinements

Conclusion

A primer on lattices

Modulus fault attacks

Experiments and refinements

Conclusion

A primer on lattices

or dimension $\dim(L)$. It is well-defined.
Modulus fault attacks

Experiments and refinements

Conclusion

A primer on lattices

The number of vectors in a basis is called the rank or dimension dim(L). It is well-defined.

Modulus fault attacks

Experiments and refinements

Conclusion

A primer on lattices

or dimension $\dim(L)$. It is well-defined.

Modulus fault attacks

Experiments and refinements

Conclusion

A primer on lattices

Some bases are better than others: with shorter, almost orthogonal vectors. We call them reduced basis.

Modulus fault attacks

Experiments and refinements

Conclusion

A primer on lattices

We have algorithms, such as LLL, to compute reduced bases. In low dimension (say $\lesssim 100$), we can obtain "optimal" lattice reduction in practice.

Modulus fault attacks

Experiments and refinements

Conclusion

A primer on lattices

Another important invariant: lattice volume; *d*-dimensional volume of the parallelipiped defined by a basis. Independent of the basis.

Modulus fault attacks

Experiments and refinements

Conclusion

A primer on lattices

Another important invariant: lattice volume; *d*-dimensional volume of the parallelipiped defined by a basis. Independent of the basis.

Modulus fault attacks

Experiments and refinements

Conclusion

A primer on lattices

For "typical" (e.g. random) lattices, vectors in a short basis are all roughly the same length $\approx \text{vol}(L)^{1/\dim(L)}$.

Modulus fault attacks

Experiments and refinements

Conclusion

A primer on lattices

Given a lattice *L* of dimension *d* in \mathbb{Z}^n , the set of vectors in \mathbb{Z}^n orthogonal to all of the vectors in *L* is also a lattice L^{\perp} , of dimension n - d and volume $vol(L^{\perp}) = vol(L)$.

Modulus fault attacks

Experiments and refinements

Conclusion

A primer on lattices

Given a basis of L, we can compute a reduced basis of L^{\perp} using an algorithm due to Nguyen and Stern (LLL in dimension n + d).

Modulus fault attacks

Experiments and refinements

Conclusion

A primer on lattices

Given a basis of L, we can compute a reduced basis of L^{\perp} using an algorithm due to Nguyen and Stern (LLL in dimension n + d).

Modulus fault attacks

Experiments and refinements

Lattice attack overview (I)

- Recall that we have a vector v = αx + βy in Z^ℓ with x, y unknown. We want to recover these hidden vectors. Let L = Zv ⊂ Z^ℓ.
- Compute a reduced basis (b₁,..., b_{ℓ-1}) of the lattice L[⊥] of vectors in Z^ℓ orthogonal to v. The volume of this lattice is

 $\operatorname{vol}(L^{\perp}) = \operatorname{vol}(L) = \|\mathbf{v}\| \approx N^{3/2}$

• Since $\mathbf{v} = \alpha \mathbf{x} + \beta \mathbf{y}$, the **b**_i's satisfy:

 $\alpha \langle \mathbf{b}_i, \mathbf{x} \rangle + \beta \langle \mathbf{b}_i, \mathbf{y} \rangle = 0$

- But the smallest nonzero solution (s, t) to αs + βt = 0 is of size ≈ N, so a given b_i is either orthogonal to both x and y, or it is of norm > √N.
- Only ℓ 2 independent vectors orthogonal to both x and y, so
 b_{ℓ-1} must be of length > √N. The remaining vectors b₁, ...,
 b_{ℓ-2} generate a lattice L' of volume ≈ vol(L)/||b_{ℓ-1}|| ≈ N.

Modulus fault attacks

Experiments and refinements

Lattice attack overview (I)

- Recall that we have a vector v = αx + βy in Z^ℓ with x, y unknown. We want to recover these hidden vectors. Let L = Zv ⊂ Z^ℓ.
- Compute a reduced basis (b₁,..., b_{ℓ-1}) of the lattice L[⊥] of vectors in Z^ℓ orthogonal to v. The volume of this lattice is

$$\operatorname{vol}(L^{\perp}) = \operatorname{vol}(L) = \|\mathbf{v}\| \approx N^{3/2}$$

• Since $\mathbf{v} = \alpha \mathbf{x} + \beta \mathbf{y}$, the **b**_i's satisfy:

 $\alpha \langle \mathbf{b}_i, \mathbf{x} \rangle + \beta \langle \mathbf{b}_i, \mathbf{y} \rangle = 0$

- But the smallest nonzero solution (s, t) to αs + βt = 0 is of size ≈ N, so a given b_i is either orthogonal to both x and y, or it is of norm > √N.
- Only ℓ 2 independent vectors orthogonal to both x and y, so
 b_{ℓ-1} must be of length > √N. The remaining vectors b₁, ...,
 b_{ℓ-2} generate a lattice L' of volume ≈ vol(L)/||b_{ℓ-1}|| ≈ N.

Modulus fault attacks

Experiments and refinements

Lattice attack overview (I)

- Recall that we have a vector v = αx + βy in Z^ℓ with x, y unknown. We want to recover these hidden vectors. Let L = Zv ⊂ Z^ℓ.
- Compute a reduced basis (b₁,..., b_{ℓ-1}) of the lattice L[⊥] of vectors in Z^ℓ orthogonal to v. The volume of this lattice is

$$\operatorname{vol}(L^{\perp}) = \operatorname{vol}(L) = \|\mathbf{v}\| \approx N^{3/2}$$

• Since $\mathbf{v} = \alpha \mathbf{x} + \beta \mathbf{y}$, the $\mathbf{b_i}$'s satisfy:

$$\alpha \langle \mathbf{b}_i, \mathbf{x} \rangle + \beta \langle \mathbf{b}_i, \mathbf{y} \rangle = 0$$

- But the smallest nonzero solution (s, t) to αs + βt = 0 is of size ≈ N, so a given b_i is either orthogonal to both x and y, or it is of norm > √N.
- Only ℓ 2 independent vectors orthogonal to both x and y, so
 b_{ℓ-1} must be of length > √N. The remaining vectors b₁, ...,
 b_{ℓ-2} generate a lattice L' of volume ≈ vol(L)/||b_{ℓ-1}|| ≈ N.

Modulus fault attacks

Experiments and refinements

Lattice attack overview (I)

- Recall that we have a vector v = αx + βy in Z^ℓ with x, y unknown. We want to recover these hidden vectors. Let L = Zv ⊂ Z^ℓ.
- Compute a reduced basis (b₁,..., b_{ℓ-1}) of the lattice L[⊥] of vectors in Z^ℓ orthogonal to v. The volume of this lattice is

 $\operatorname{vol}(L^{\perp}) = \operatorname{vol}(L) = \|\mathbf{v}\| \approx N^{3/2}$

• Since $\mathbf{v} = \alpha \mathbf{x} + \beta \mathbf{y}$, the $\mathbf{b_i}$'s satisfy:

 $\alpha \langle \mathbf{b}_i, \mathbf{x} \rangle + \beta \langle \mathbf{b}_i, \mathbf{y} \rangle = \mathbf{0}$

- But the smallest nonzero solution (s, t) to αs + βt = 0 is of size ≈ N, so a given b_i is either orthogonal to both x and y, or it is of norm > √N.
- Only ℓ 2 independent vectors orthogonal to both x and y, so
 b_{ℓ-1} must be of length > √N. The remaining vectors b₁, ...,
 b_{ℓ-2} generate a lattice L' of volume ≈ vol(L)/||b_{ℓ-1}|| ≈ N.

Modulus fault attacks

Experiments and refinements

Lattice attack overview (I)

- Recall that we have a vector v = αx + βy in Z^ℓ with x, y unknown. We want to recover these hidden vectors. Let L = Zv ⊂ Z^ℓ.
- Compute a reduced basis (b₁,..., b_{ℓ-1}) of the lattice L[⊥] of vectors in Z^ℓ orthogonal to v. The volume of this lattice is

 $\operatorname{vol}(L^{\perp}) = \operatorname{vol}(L) = \|\mathbf{v}\| \approx N^{3/2}$

• Since $\mathbf{v} = \alpha \mathbf{x} + \beta \mathbf{y}$, the $\mathbf{b_i}$'s satisfy:

 $\alpha \langle \mathbf{b}_i, \mathbf{x} \rangle + \beta \langle \mathbf{b}_i, \mathbf{y} \rangle = 0$

- But the smallest nonzero solution (s, t) to αs + βt = 0 is of size ≈ N, so a given b_i is either orthogonal to both x and y, or it is of norm > √N.
- Only $\ell 2$ independent vectors orthogonal to both **x** and **y**, so $\mathbf{b}_{\ell-1}$ must be of length $> \sqrt{N}$. The remaining vectors $\mathbf{b}_1, \ldots, \mathbf{b}_{\ell-2}$ generate a lattice L' of volume $\approx \operatorname{vol}(L)/\|\mathbf{b}_{\ell-1}\| \approx N$.

Modulus fault attacks

Experiments and refinements

- Since L' has no reason to be special, assume heuristically that it behaves like a random lattice. In particular, we expect all of the vectors in the reduced basis $(\mathbf{b}_1, \ldots, \mathbf{b}_{\ell-2})$ to be roughly of length $\operatorname{vol}(L')^{1/(\ell-2)} \approx N^{1/(\ell-2)}$.
- In particular, if l≥ 5, they are all of length ≪ √N. Therefore, they are orthogonal to x, y.
- Then, compute a reduced basis (x', y') of the orthogonal lattice (L')[⊥]. This lattice is of volume vol(L') ≈ N, and in particular doesn't contain many vectors of length ≤ √ℓN (we can enumerate them easily). But x is one of them!
- For each pair (s, t) such that z = sx' + ty' is of length ≤ √ℓN, compute gcd(v z, N). When we reach z = x, this GCD is p, because v is equal to x mod p but not mod q.
- Hence, we have factored N (provided that $\ell \geq 5$)!

Modulus fault attacks

Experiments and refinements

- Since L' has no reason to be special, assume heuristically that it behaves like a random lattice. In particular, we expect all of the vectors in the reduced basis $(\mathbf{b}_1, \ldots, \mathbf{b}_{\ell-2})$ to be roughly of length $\operatorname{vol}(L')^{1/(\ell-2)} \approx N^{1/(\ell-2)}$.
- In particular, if ℓ ≥ 5, they are all of length ≪ √N. Therefore, they are orthogonal to x, y.
- Then, compute a reduced basis (x', y') of the orthogonal lattice (L')[⊥]. This lattice is of volume vol(L') ≈ N, and in particular doesn't contain many vectors of length ≤ √ℓN (we can enumerate them easily). But x is one of them!
- For each pair (s, t) such that z = sx' + ty' is of length ≤ √ℓN, compute gcd(v z, N). When we reach z = x, this GCD is p, because v is equal to x mod p but not mod q.
- Hence, we have factored N (provided that $\ell \geq 5$)!

Modulus fault attacks

Experiments and refinements

- Since L' has no reason to be special, assume heuristically that it behaves like a random lattice. In particular, we expect all of the vectors in the reduced basis $(\mathbf{b}_1, \ldots, \mathbf{b}_{\ell-2})$ to be roughly of length $\operatorname{vol}(L')^{1/(\ell-2)} \approx N^{1/(\ell-2)}$.
- In particular, if ℓ ≥ 5, they are all of length ≪ √N. Therefore, they are orthogonal to x, y.
- Then, compute a reduced basis (x', y') of the orthogonal lattice (L')[⊥]. This lattice is of volume vol(L') ≈ N, and in particular doesn't contain many vectors of length ≤ √ℓN (we can enumerate them easily). But x is one of them!
- For each pair (s, t) such that z = sx' + ty' is of length ≤ √ℓN, compute gcd(v z, N). When we reach z = x, this GCD is p, because v is equal to x mod p but not mod q.
- Hence, we have factored N (provided that $\ell \geq 5$)!

Modulus fault attacks

Experiments and refinements

- Since L' has no reason to be special, assume heuristically that it behaves like a random lattice. In particular, we expect all of the vectors in the reduced basis $(\mathbf{b}_1, \ldots, \mathbf{b}_{\ell-2})$ to be roughly of length $\operatorname{vol}(L')^{1/(\ell-2)} \approx N^{1/(\ell-2)}$.
- In particular, if ℓ ≥ 5, they are all of length ≪ √N. Therefore, they are orthogonal to x, y.
- Then, compute a reduced basis (x', y') of the orthogonal lattice (L')[⊥]. This lattice is of volume vol(L') ≈ N, and in particular doesn't contain many vectors of length ≤ √ℓN (we can enumerate them easily). But x is one of them!
- For each pair (s, t) such that z = sx' + ty' is of length ≤ √ℓN, compute gcd(v z, N). When we reach z = x, this GCD is p, because v is equal to x mod p but not mod q.
- Hence, we have factored N (provided that $\ell \geq 5$)!

Modulus fault attacks

Experiments and refinements

- Since L' has no reason to be special, assume heuristically that it behaves like a random lattice. In particular, we expect all of the vectors in the reduced basis $(\mathbf{b}_1, \ldots, \mathbf{b}_{\ell-2})$ to be roughly of length $\operatorname{vol}(L')^{1/(\ell-2)} \approx N^{1/(\ell-2)}$.
- In particular, if ℓ ≥ 5, they are all of length ≪ √N. Therefore, they are orthogonal to x, y.
- Then, compute a reduced basis (x', y') of the orthogonal lattice (L')[⊥]. This lattice is of volume vol(L') ≈ N, and in particular doesn't contain many vectors of length ≤ √ℓN (we can enumerate them easily). But x is one of them!
- For each pair (s, t) such that z = sx' + ty' is of length ≤ √ℓN, compute gcd(v z, N). When we reach z = x, this GCD is p, because v is equal to x mod p but not mod q.
- Hence, we have factored N (provided that $\ell \geq 5$)!

Modulus fault attacks

Experiments and refinements

- Since L' has no reason to be special, assume heuristically that it behaves like a random lattice. In particular, we expect all of the vectors in the reduced basis $(\mathbf{b}_1, \ldots, \mathbf{b}_{\ell-2})$ to be roughly of length $\operatorname{vol}(L')^{1/(\ell-2)} \approx N^{1/(\ell-2)}$.
- In particular, if l≥ 5, they are all of length ≪ √N. Therefore, they are orthogonal to x, y.
- Then, compute a reduced basis (x', y') of the orthogonal lattice (L')[⊥]. This lattice is of volume vol(L') ≈ N, and in particular doesn't contain many vectors of length ≤ √ℓN (we can enumerate them easily). But x is one of them!
- For each pair (s, t) such that z = sx' + ty' is of length ≤ √ℓN, compute gcd(v z, N). When we reach z = x, this GCD is p, because v is equal to x mod p but not mod q.
- Hence, we have factored N (provided that l≥ 5)! (At least heuristically).

Modulus fault attacks 0000 0000 Experiments and refinements ••••• ••••• Conclusion

Introduction

Modulus fault attacks Basic idea Using orthogonal lattice

Experiments and refinements

Simulation and experiments Solving the N' problem

Experiments and refinements •••• ••••

Simulation of the attack

Since the attack is heuristic, validation is in order.

- Pick random p, q-parts (x_i, y_i) .
- Compute the corresponding CRT values v_i in \mathbb{Z} .
- Try to factor N using the orthogonal lattice attack. Namely:
 - Compute a reduced basis (b₁,..., b_{i-1}) of the orthogonal lattice of 2x) with LLL.
 - Compute a reduced basis ('y', 'y') of the orthogonal lattice of Zby 0 == 0 Zby.
 - 3.3. Enumerate the vectors z of $Zx' \oplus Zy'$ of length at most $\sqrt{\delta N}$ and compute the GCDs gcd (v - z, N) until a factor is found.

Experiments and refinements •••• ••••

Simulation of the attack

Since the attack is heuristic, validation is in order.

- Pick random p, q-parts (x_i, y_i) .
- Compute the corresponding CRT values v_i in \mathbb{Z} .
- Try to factor N using the orthogonal lattice attack. Namely:
 Compute a reduced basis (b₁,..., b_{k-1}) of the orthogonal lattice of Zv) with LLL.
 - Compute a reduced tasis (x, y) of the orthogonal lattice of Zb₁ a --- a Zb₁ --
 - Enumerate the vectors z of $Zz' \oplus Zy'$ of length at most $\sqrt{2N}$ and compute the GCDs gcd (v = z, N) until a factor is found.

Since the attack is heuristic, validation is in order.

- Pick random p, q-parts (x_i, y_i) .
- Compute the corresponding CRT values v_i in \mathbb{Z} .
- Try to factor N using the orthogonal lattice attack. Namely:
 - Compute a reduced basis (b₁,..., b_{ℓ-1}) of the orthogonal lattice of Zv) with LLL.
 - 2. Compute a reduced basis $(\mathbf{x}', \mathbf{y}')$ of the orthogonal lattice of $\mathbb{Z}\mathbf{b}_1 \oplus \cdots \oplus \mathbb{Z}\mathbf{b}_{\ell-2}$.
 - 3. Enumerate the vectors \mathbf{z} of $\mathbb{Z}\mathbf{x}' \oplus \mathbb{Z}\mathbf{y}'$ of length at most $\sqrt{\ell N}$ and compute the GCDs $gcd(\mathbf{v} \mathbf{z}, N)$ until a factor is found.

Since the attack is heuristic, validation is in order.

- Pick random p, q-parts (x_i, y_i) .
- Compute the corresponding CRT values v_i in \mathbb{Z} .
- Try to factor N using the orthogonal lattice attack. Namely:
 - 1. Compute a reduced basis $(b_1,\ldots,b_{\ell-1})$ of the orthogonal lattice of $\mathbb{Z} \bm{v})$ with LLL.
 - 2. Compute a reduced basis $(\mathbf{x}', \mathbf{y}')$ of the orthogonal lattice of $\mathbb{Z}\mathbf{b}_1 \oplus \cdots \oplus \mathbb{Z}\mathbf{b}_{\ell-2}$.
 - 3. Enumerate the vectors \mathbf{z} of $\mathbb{Z}\mathbf{x}' \oplus \mathbb{Z}\mathbf{y}'$ of length at most $\sqrt{\ell N}$ and compute the GCDs $gcd(\mathbf{v} \mathbf{z}, N)$ until a factor is found.

Since the attack is heuristic, validation is in order.

- Pick random p, q-parts (x_i, y_i) .
- Compute the corresponding CRT values v_i in \mathbb{Z} .
- Try to factor N using the orthogonal lattice attack. Namely:
 - 1. Compute a reduced basis $(b_1,\ldots,b_{\ell-1})$ of the orthogonal lattice of $\mathbb{Z} \bm{v})$ with LLL.
 - 2. Compute a reduced basis $(\mathbf{x}', \mathbf{y}')$ of the orthogonal lattice of $\mathbb{Z}\mathbf{b}_1 \oplus \cdots \oplus \mathbb{Z}\mathbf{b}_{\ell-2}$.
 - 3. Enumerate the vectors \mathbf{z} of $\mathbb{Z}\mathbf{x}' \oplus \mathbb{Z}\mathbf{y}'$ of length at most $\sqrt{\ell N}$ and compute the GCDs $gcd(\mathbf{v} \mathbf{z}, N)$ until a factor is found.

Since the attack is heuristic, validation is in order.

- Pick random p, q-parts (x_i, y_i) .
- Compute the corresponding CRT values v_i in \mathbb{Z} .
- Try to factor N using the orthogonal lattice attack. Namely:
 - 1. Compute a reduced basis $(b_1, \ldots, b_{\ell-1})$ of the orthogonal lattice of $\mathbb{Z}v)$ with LLL.
 - 2. Compute a reduced basis $(\mathbf{x}', \mathbf{y}')$ of the orthogonal lattice of $\mathbb{Z}\mathbf{b}_1 \oplus \cdots \oplus \mathbb{Z}\mathbf{b}_{\ell-2}$.
 - Enumerate the vectors z of Zx' ⊕ Zy' of length at most √ℓN and compute the GCDs gcd(v – z, N) until a factor is found.

Modulus fault attacks 0000 0000

Conclusion

Simulation results

Number of faulty signatures ℓ	4	5	6
1024-bit moduli	48%	100%	100%
1536-bit moduli	45%	100%	100%
2048-bit moduli	46%	100%	100%

Success probability of the attack with various parameters.

Modulus size	1024	1536	2048
Average search space $\pi \ell N/V$	24	23	24
Average total CPU time	16 ms	26 ms	34 ms

Efficiency of the attack with $\ell = 5$.

Experiments and refinements

The attack in practice

We carried out the attack against an implementation of RSA–CRT signatures on an unprotected 8-bit microcontroller.

- 1. Decapsulate the chip.
- 2. Target the SRAM and find the location of the modulus *N*.
- 3. Strike with
- After obtaining 5 pairs of correct and faulty signatures, factor N in a fraction of a second as expected.

Experiments and refinements

The attack in practice

We carried out the attack against an implementation of RSA-CRT signatures on an unprotected 8-bit microcontroller.

1. Decapsulate the chip.

- 2. Target the SRAM and find the location of the modulus *N*.
- 3. Strike with
- 4. After obtaining 5 pairs of correct and faulty signatures, factor *N* in a fraction of a second as expected.

Experiments and refinements

The attack in practice

We carried out the attack against an implementation of RSA–CRT signatures on an unprotected 8-bit microcontroller.

- 1. Decapsulate the chip.
- 2. Target the SRAM and find the location of the modulus N.

- 3. Strike with
- 4. After obtaining 5 pairs of correct and faulty signatures, factor N in a fraction of a second as expected.

Experiments and refinements

The attack in practice

We carried out the attack against an implementation of RSA–CRT signatures on an unprotected 8-bit microcontroller.

- 1. Decapsulate the chip.
- 2. Target the SRAM and find the location of the modulus N.
- 3. Strike with lasers!

4. After obtaining 5 pairs of correct and faulty signatures, factor N in a fraction of a second as expected.

Experiments and refinements

The attack in practice

We carried out the attack against an implementation of RSA–CRT signatures on an unprotected 8-bit microcontroller.

- 1. Decapsulate the chip.
- 2. Target the SRAM and find the location of the modulus N.
- 3. Strike with a focused laser beam.

4. After obtaining 5 pairs of correct and faulty signatures, factor N in a fraction of a second as expected.

Experiments and refinements

The attack in practice

We carried out the attack against an implementation of RSA–CRT signatures on an unprotected 8-bit microcontroller.

- 1. Decapsulate the chip.
- 2. Target the SRAM and find the location of the modulus N.
- 3. Strike with
- After obtaining 5 pairs of correct and faulty signatures, factor N in a fraction of a second as expected.

Modulus fault attacks 0000 0000 Experiments and refinements

Conclusion

Introduction

Modulus fault attacks Basic idea Using orthogonal lattice

Experiments and refinements

Simulation and experiments Solving the N' problem
Modulus fault attacks 0000 0000 Experiments and refinements

- Earlier, I claimed that to obtain the CRT values v_i in Z, we needed pairs (σ_i, σ'_i) formed of a correct and a faulty signature on the same message.
- But this is not enough: to compute $v_i = CRT(\sigma_i, \sigma'_i)$, one needs to know the faulty modulus N'_i .
- Not very realistic: the signing device is unlikely to output its public modulus together with a signature.
- Fortunately, with a few more faulty of a certain reasonable shape, we can find the v_i's without knowing the faulty moduli.
- We give solutions under the following two fault models:
 - 8 consecutive bits (e.g. glitch stlack when copying the modulus from memory on an 8-bit architecture).
 - Least significant half of all bits (e.g. laser beam targeted at the LSBs of N in memory).

Modulus fault attacks 0000 0000 Experiments and refinements

- Earlier, I claimed that to obtain the CRT values v_i in Z, we needed pairs (σ_i, σ'_i) formed of a correct and a faulty signature on the same message.
- But this is not enough: to compute $v_i = CRT(\sigma_i, \sigma'_i)$, one needs to know the faulty modulus N'_i .
- Not very realistic: the signing device is unlikely to output its public modulus together with a signature.
- Fortunately, with a few more faulty of a certain reasonable shape, we can find the v_i's without knowing the faulty moduli.
- We give solutions under the following two fault models:
 - a consecutive bits (e.g. glitch attack when copying the modulus from memory on an 8-bit architecture).
 - (2) (3) (as the faulty moduli //j only differ from // on the least significant half of all bits (e.g. laser beam targeted at the LSBs of // in memory).

Modulus fault attacks 0000 0000 Experiments and refinements

- Earlier, I claimed that to obtain the CRT values v_i in Z, we needed pairs (σ_i, σ'_i) formed of a correct and a faulty signature on the same message.
- But this is not enough: to compute $v_i = CRT(\sigma_i, \sigma'_i)$, one needs to know the faulty modulus N'_i .
- Not very realistic: the signing device is unlikely to output its public modulus together with a signature.
- Fortunately, with a few more faulty of a certain reasonable shape, we can find the v_i's without knowing the faulty moduli.
- We give solutions under the following two fault models:
 - Subge-sole cause cause causy moduli (4) any ameriman we so 8 consecutive bits (e.g. glitch attack when copying the modulus from memory on an 6-bit architecture).
 - LSB faults: the faulty moduli N_i only differ from N on the least significant half of all bits (e.g. laser beam targeted at the LSBs of N in memory).

Modulus fault attacks 0000 0000 Experiments and refinements

- Earlier, I claimed that to obtain the CRT values v_i in Z, we needed pairs (σ_i, σ'_i) formed of a correct and a faulty signature on the same message.
- But this is not enough: to compute $v_i = CRT(\sigma_i, \sigma'_i)$, one needs to know the faulty modulus N'_i .
- Not very realistic: the signing device is unlikely to output its public modulus together with a signature.
- Fortunately, with a few more faulty of a certain reasonable shape, we can find the v_i's without knowing the faulty moduli.
- We give solutions under the following two fault models:
 1. Single byte faults: the faulty moduli N(only differ from N on 8 consecutive bits (e.g. glitch attack when copying the modulus from memory on an 8-bit architecture).
 - I.SB faults: the faulty moduli N/ only differ from N on the least significant half of all bits (e.g. laser beam targeted at the LSBs of N in memory).

Modulus fault attacks 0000 0000 Experiments and refinements

- Earlier, I claimed that to obtain the CRT values v_i in Z, we needed pairs (σ_i, σ'_i) formed of a correct and a faulty signature on the same message.
- But this is not enough: to compute $v_i = CRT(\sigma_i, \sigma'_i)$, one needs to know the faulty modulus N'_i .
- Not very realistic: the signing device is unlikely to output its public modulus together with a signature.
- Fortunately, with a few more faulty of a certain reasonable shape, we can find the v_i's without knowing the faulty moduli.
- We give solutions under the following two fault models:
 - 1. Single-byte faults: the faulty moduli N'_i only differ from N on 8 consecutive bits (e.g. glitch attack when copying the modulus from memory on an 8-bit architecture).
 - LSB faults: the faulty moduli N_i only differ from N on the least significant half of all bits (e.g. laser beam targeted at the LSBs of N in memory).

Modulus fault attacks 0000 0000 Experiments and refinements

- Earlier, I claimed that to obtain the CRT values v_i in Z, we needed pairs (σ_i, σ'_i) formed of a correct and a faulty signature on the same message.
- But this is not enough: to compute $v_i = CRT(\sigma_i, \sigma'_i)$, one needs to know the faulty modulus N'_i .
- Not very realistic: the signing device is unlikely to output its public modulus together with a signature.
- Fortunately, with a few more faulty of a certain reasonable shape, we can find the v_i's without knowing the faulty moduli.
- We give solutions under the following two fault models:
 - Single-byte faults: the faulty moduli N_i' only differ from N on 8 consecutive bits (e.g. glitch attack when copying the modulus from memory on an 8-bit architecture).
 - LSB faults: the faulty moduli N_i only differ from N on the least significant half of all bits (e.g. laser beam targeted at the LSBs of N in memory).

Modulus fault attacks 0000 0000 Experiments and refinements

- Earlier, I claimed that to obtain the CRT values v_i in Z, we needed pairs (σ_i, σ'_i) formed of a correct and a faulty signature on the same message.
- But this is not enough: to compute $v_i = CRT(\sigma_i, \sigma'_i)$, one needs to know the faulty modulus N'_i .
- Not very realistic: the signing device is unlikely to output its public modulus together with a signature.
- Fortunately, with a few more faulty of a certain reasonable shape, we can find the v_i's without knowing the faulty moduli.
- We give solutions under the following two fault models:
 - Single-byte faults: the faulty moduli N'_i only differ from N on 8 consecutive bits (e.g. glitch attack when copying the modulus from memory on an 8-bit architecture).
 - LSB faults: the faulty moduli N' only differ from N on the least significant half of all bits (e.g. laser beam targeted at the LSBs of N in memory).

Modulus fault attacks 0000 0000 Experiments and refinements

Solution for LSB faults (I)

- Suppose that, on a given message *m*, we can obtain not a correct-faulty signature pair (σ, σ') , but several faulty signatures σ'_j , $1 \le j \le k$ corresponding to unknown faulty moduli $N'_j = N + \varepsilon_j$ $(|\varepsilon_j| \ll \sqrt{N})$.
- Given this data, we want to recover the CRT value v in \mathbb{Z} .
- We can write:

$$v = \sigma + t_0 \cdot N = \sigma'_j + t_j \cdot (N + \varepsilon_j)$$

for some integers t_j of size \sqrt{N} .

- Hence, for $1 \le j \le k$, $\sigma \sigma'_j \equiv t_j \varepsilon_j \pmod{N}$, and since $|t_j \varepsilon_j| \ll N$, the equality holds in \mathbb{Z} .
- As a result, we get $t_j = t_0$ for all j, and hence:

$$\sigma - \sigma'_j = t_0 \cdot \varepsilon_j$$

• If $gcd(\varepsilon_1, \ldots, \varepsilon_k) = 1$, we can compute t_0 as $gcd(\sigma - \sigma'_1, \ldots, \sigma - \sigma'_j)$, and deduce v accordingly.

Modulus fault attacks 0000 0000 Experiments and refinements

Solution for LSB faults (I)

- Suppose that, on a given message *m*, we can obtain not a correct-faulty signature pair (σ, σ') , but several faulty signatures σ'_j , $1 \le j \le k$ corresponding to unknown faulty moduli $N'_j = N + \varepsilon_j$ $(|\varepsilon_j| \ll \sqrt{N})$.
- Given this data, we want to recover the CRT value v in Z.
 We can write:

$$v = \sigma + t_0 \cdot N = \sigma'_j + t_j \cdot (N + \varepsilon_j)$$

for some integers t_i of size \sqrt{N} .

- Hence, for $1 \le j \le k$, $\sigma \sigma'_j \equiv t_j \varepsilon_j \pmod{N}$, and since $|t_j \varepsilon_j| \ll N$, the equality holds in \mathbb{Z} .
- As a result, we get $t_j = t_0$ for all j, and hence:

$$\sigma - \sigma'_j = t_0 \cdot \varepsilon_j$$

• If $gcd(\varepsilon_1, \dots, \varepsilon_k) = 1$, we can compute t_0 as $gcd(\sigma - \sigma'_1, \dots, \sigma - \sigma'_j)$, and deduce v accordingly.

Modulus fault attacks 0000 0000 Experiments and refinements

Solution for LSB faults (I)

- Suppose that, on a given message *m*, we can obtain not a correct-faulty signature pair (σ, σ') , but several faulty signatures σ'_j , $1 \le j \le k$ corresponding to unknown faulty moduli $N'_j = N + \varepsilon_j$ $(|\varepsilon_j| \ll \sqrt{N})$.
- Given this data, we want to recover the CRT value v in \mathbb{Z} .
- We can write:

$$v = \sigma + t_0 \cdot N = \sigma'_j + t_j \cdot \left(N + \varepsilon_j\right)$$

for some integers t_j of size \sqrt{N} .

- Hence, for $1 \le j \le k$, $\sigma \sigma'_j \equiv t_j \varepsilon_j \pmod{N}$, and since $|t_j \varepsilon_j| \ll N$, the equality holds in \mathbb{Z} .
- As a result, we get $t_j = t_0$ for all j, and hence:

$$\sigma - \sigma'_j = t_0 \cdot \varepsilon_j$$

• If $gcd(\varepsilon_1, \dots, \varepsilon_k) = 1$, we can compute t_0 as $gcd(\sigma - \sigma'_1, \dots, \sigma - \sigma'_j)$, and deduce v accordingly.

Modulus fault attacks 0000 0000 Experiments and refinements

Solution for LSB faults (I)

- Suppose that, on a given message *m*, we can obtain not a correct-faulty signature pair (σ, σ') , but several faulty signatures σ'_j , $1 \le j \le k$ corresponding to unknown faulty moduli $N'_j = N + \varepsilon_j$ $(|\varepsilon_j| \ll \sqrt{N})$.
- Given this data, we want to recover the CRT value v in \mathbb{Z} .
- We can write:

$$v = \sigma + t_0 \cdot N = \sigma'_j + t_j \cdot (N + \varepsilon_j)$$

for some integers t_j of size \sqrt{N} .

- Hence, for $1 \le j \le k$, $\sigma \sigma'_j \equiv t_j \varepsilon_j \pmod{N}$, and since $|t_j \varepsilon_j| \ll N$, the equality holds in \mathbb{Z} .
- As a result, we get $t_j = t_0$ for all j, and hence:

$$\sigma - \sigma'_j = t_0 \cdot \varepsilon_j$$

• If $gcd(\varepsilon_1, \ldots, \varepsilon_k) = 1$, we can compute t_0 as $gcd(\sigma - \sigma'_1, \ldots, \sigma - \sigma'_j)$, and deduce v accordingly.

Modulus fault attacks 0000 0000 Experiments and refinements

Solution for LSB faults (I)

- Suppose that, on a given message *m*, we can obtain not a correct-faulty signature pair (σ, σ') , but several faulty signatures σ'_j , $1 \le j \le k$ corresponding to unknown faulty moduli $N'_j = N + \varepsilon_j$ $(|\varepsilon_j| \ll \sqrt{N})$.
- Given this data, we want to recover the CRT value v in \mathbb{Z} .
- We can write:

$$v = \sigma + t_0 \cdot N = \sigma'_j + t_j \cdot (N + \varepsilon_j)$$

for some integers t_j of size \sqrt{N} .

- Hence, for $1 \le j \le k$, $\sigma \sigma'_j \equiv t_j \varepsilon_j \pmod{N}$, and since $|t_j \varepsilon_j| \ll N$, the equality holds in \mathbb{Z} .
- As a result, we get $t_j = t_0$ for all j, and hence:

$$\sigma - \sigma_j' = t_0 \cdot \varepsilon_j$$

• If $gcd(\varepsilon_1, \dots, \varepsilon_k) = 1$, we can compute t_0 as $gcd(\sigma - \sigma'_1, \dots, \sigma - \sigma'_j)$, and deduce v accordingly.

Modulus fault attacks 0000 0000 Experiments and refinements

Solution for LSB faults (I)

- Suppose that, on a given message *m*, we can obtain not a correct-faulty signature pair (σ, σ') , but several faulty signatures σ'_j , $1 \le j \le k$ corresponding to unknown faulty moduli $N'_j = N + \varepsilon_j$ $(|\varepsilon_j| \ll \sqrt{N})$.
- Given this data, we want to recover the CRT value v in \mathbb{Z} .
- We can write:

$$v = \sigma + t_0 \cdot N = \sigma'_j + t_j \cdot (N + \varepsilon_j)$$

for some integers t_j of size \sqrt{N} .

- Hence, for $1 \le j \le k$, $\sigma \sigma'_j \equiv t_j \varepsilon_j \pmod{N}$, and since $|t_j \varepsilon_j| \ll N$, the equality holds in \mathbb{Z} .
- As a result, we get $t_j = t_0$ for all j, and hence:

$$\sigma - \sigma'_j = t_0 \cdot \varepsilon_j$$

• If $gcd(\varepsilon_1, \ldots, \varepsilon_k) = 1$, we can compute t_0 as $gcd(\sigma - \sigma'_1, \ldots, \sigma - \sigma'_j)$, and deduce v accordingly.

Modulus fault attacks 0000 0000

- The probability that this method works is the probability that
 ε₁,..., ε_k are coprime, namely 1/ζ(k). This converges quickly
 to 1 as k grows, and this theoretical value is verified very well
 in simulation.
- Since we need $\ell = 5$ CRT values to carry out the lattice attack, this method requires $k \cdot \ell$ faulty signatures overall and has a success probability of $\zeta(k)^{-\ell}$.
- Taking $\ell = 5, k = 9$ (45 faults in total) gives a success probability > 99%.
- Validated experimentally using laser fault injection, even with k as low as 4 (theoretical success probability of 67%)!

Modulus fault attacks 0000 0000 Experiments and refinements

- The probability that this method works is the probability that
 ε₁,..., ε_k are coprime, namely 1/ζ(k). This converges quickly
 to 1 as k grows, and this theoretical value is verified very well
 in simulation.
- Since we need $\ell = 5$ CRT values to carry out the lattice attack, this method requires $k \cdot \ell$ faulty signatures overall and has a success probability of $\zeta(k)^{-\ell}$.
- Taking $\ell = 5, k = 9$ (45 faults in total) gives a success probability > 99%.
- Validated experimentally using laser fault injection, even with k as low as 4 (theoretical success probability of 67%)!

Modulus fault attacks 0000 0000 Experiments and refinements

- The probability that this method works is the probability that
 ε₁,..., ε_k are coprime, namely 1/ζ(k). This converges quickly
 to 1 as k grows, and this theoretical value is verified very well
 in simulation.
- Since we need $\ell = 5$ CRT values to carry out the lattice attack, this method requires $k \cdot \ell$ faulty signatures overall and has a success probability of $\zeta(k)^{-\ell}$.
- Taking $\ell = 5, k = 9$ (45 faults in total) gives a success probability > 99%.
- Validated experimentally using laser fault injection, even with k as low as 4 (theoretical success probability of 67%)!

Modulus fault attacks 0000 0000 Experiments and refinements

- The probability that this method works is the probability that
 ε₁,..., ε_k are coprime, namely 1/ζ(k). This converges quickly
 to 1 as k grows, and this theoretical value is verified very well
 in simulation.
- Since we need $\ell = 5$ CRT values to carry out the lattice attack, this method requires $k \cdot \ell$ faulty signatures overall and has a success probability of $\zeta(k)^{-\ell}$.
- Taking $\ell = 5, k = 9$ (45 faults in total) gives a success probability > 99%.
- Validated experimentally using laser fault injection, even with k as low as 4 (theoretical success probability of 67%)!

Modulus fault attacks 0000 0000 Experiments and refinements

Conclusion

Conclusion

- This new attack presents a number of nice features:
 - Quite efficient and doesn't require too many faults (45 faulty signatures enough in a typical setting for > 99% success rate).
 - Not thwarted by e.g. Shamir's trick.
- However, it does have some limitations:
 - Must be able to obtain a correct and a faulty signature with the same CRT value: not possible with probabilistic paddings like PSS.
 - Most seriously: a faster, frequently used technique for CRT interpolation (Garner's formula) avoids reducing mod N altogether, and hence defeats this attack.
- Possible extension to protected RSA-CRT implementations that *do* a final modular reduction? To discrete log settings?

Modulus fault attacks 0000 0000 Experiments and refinements

Conclusion

Conclusion

- This new attack presents a number of nice features:
 - Quite efficient and doesn't require too many faults (45 faulty signatures enough in a typical setting for > 99% success rate).
 - Not thwarted by e.g. Shamir's trick.
- However, it does have some limitations:
 - Must be able to obtain a correct and a faulty signature with the same CRT value: not possible with probabilistic paddings like PSS.
 - Most seriously: a faster, frequently used technique for CRT interpolation (Garner's formula) avoids reducing mod N altogether, and hence defeats this attack.
- Possible extension to protected RSA–CRT implementations that *do* a final modular reduction? To discrete log settings?

Modulus fault attacks 0000 0000 Experiments and refinements

Conclusion

Conclusion

- This new attack presents a number of nice features:
 - Quite efficient and doesn't require too many faults (45 faulty signatures enough in a typical setting for > 99% success rate).
 - Not thwarted by e.g. Shamir's trick.
- However, it does have some limitations:
 - Must be able to obtain a correct and a faulty signature with the same CRT value: not possible with probabilistic paddings like PSS.
 - Most seriously: a faster, frequently used technique for CRT interpolation (Garner's formula) avoids reducing mod N altogether, and hence defeats this attack.
- Possible extension to protected RSA-CRT implementations that do a final modular reduction? To discrete log settings?

Modulus fault attacks 0000 0000 Experiments and refinements

Conclusion

Thank you!